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Abstract: We aim to develop a comprehensive tunnel lining detection method and clustering tech-
nique for semi-automatic rebar identification in order to investigate the ten tunnels along the South-
link Line Railway of Taiwan (SLRT). We used the Ground Penetrating Radar (GPR) instrument with
a 1000 MHz antenna frequency, which was placed on a versatile antenna holder that is flexible to
the tunnel’s condition. We called it a Vehicle-mounted Ground Penetrating Radar (VMGPR) system.
We detected the tunnel lining boundary according to the Fresnel Reflection Coefficient (FRC) in
both A-scan and B-scan data, then estimated the thinning lining of the tunnels. By applying the
Hilbert Transform (HT), we extracted the envelope to see the overview of the energy distribution
in our data. Once we obtained the filtered radargram, we used it to estimate the Two-dimensional
Forward Modeling (TDFM) simulation parameters. Specifically, we produced the TDFM model
with different random noise (0–30%) for the rebar model. The rebar model and the field data were
identified with the Hierarchical Agglomerative Clustering (HAC) in machine learning and evaluated
using the Silhouette Index (SI). Taken together, these results suggest three boundaries of the tunnel
lining i.e., the air–second lining boundary, the second–first lining boundary, and the first–wall rock
boundary. Among the tunnels that we scanned, the Fangye 1 tunnel is the only one in category
B, with the highest percentage of the thinning lining, i.e., 13.39%, whereas the other tunnels are in
category A, with a percentage of the thinning lining of 0–1.71%. Based on the clustered radargram,
the TDFM model for rebar identification is consistent with the field data, where k = 2 is the best
choice to represent our data set. It is interesting to observe in the clustered radargram that the TDFM
model can mimic the field data. The most striking result is that the TDFM model with 30% random
noise seems to describe our data well, where the rebar response is rough due to the high noise level
on the radargram.

Keywords: ground penetrating radar; railway tunnel; rebar detection; tunnel lining; hierarchical
agglomerative clustering; silhouette index

1. Introduction

The South-link Line Railway of Taiwan (SLRT) serves as an important means of
transportation that passes through the southern Central Mountain Range of Taiwan, and
has been operating for approximately 20 years, since 1991. It consists of 36 mountain
tunnels with a total length of 38.9 km, embankments and bridges with a total length of
8.8 km, and slope-land sections that extend from the Pingtung County to the Taitung County
(0k+000 to 98k+145) in southern Taiwan [1,2]. In general, the geological condition along the
SLRT belongs to the alluvium and weathering rock strata, where various landforms and
geological zones exist, such as strike-slip fault, steep slope-land, anticline, and syncline,
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making this route a relatively high risk to landslide and debris flow hazards. As reported by
the Taiwan Railway Administration, in the past decade, several shallow landslides, rockfall,
and debris flow triggered by the typhoon HAIMA, typhoon HAITANG, 0614 Rainfall,
and 0831 Rainfall events occurred. Thus, a regular inspection is needed, especially for the
lining condition of the tunnels in this route [1,3–5]. As one of the essential parts of the
supporting structure, the tunnel lining is useful for providing the correct shape to the tunnel,
strengthening the structure, counteracting the pressure of the wall rock, and preventing
the tunnel from collapsing. If the thickness of the lining is thinner than the original design,
the potential of collapsing will be higher, and major structural damage will occur [2,6,7].
Many researchers have turned their interest to using a non-destructive geophysical method,
i.e., the GPR method, because it provides an efficient way to investigate and analyze
the sublayer for any target area without causing any damage. There are several studies
reported that apply GPR for inspecting the tunnel lining, such as Parkinson and Ékes [8],
who used GPR to map the tunnel lining and locate the concrete deterioration in a water
supply tunnel, and their processed data provided a wealth of information on the condition
of the tunnel lining. Li, Li [9] applied GPR for the second lining recognition and thickness
evaluation in the tunnel by tracing the phase and amplitude of the reflective wave. Xiang,
Zhou [10] integrated the GPR and Finite-Difference Time-Domain (FDTD) methods based
on the basic information regarding the design of the tunnel structure, where the results are
used to interpret the field data, such as the thickness of the second lining and the possible
damage zones. Later, in order to improve the detection speed, Zan, Li [11] connected
the GPR antenna to the body of the train and scanned the tunnel when the train traveled
through it. However, there are several important factors to consider in order to use this
system, such as the fact that the scanning rate of the GPR instrument should be high
enough to keep up with the train speed, and the distance between the antenna and catenary
should be fixed to avoid the collisions, so the initial condition of the tunnel should be
known in advance, e.g., the existence of the messenger wire, the catenary, and the surface
of the tunnel itself. Alani and Tosti [12] adapted the GPR with different frequency antennas
systems (900 MHz and 2 GHz) to study the structural detailing of the major tunnel located
underneath. There was a higher resolution with the 2 GHz antenna used to achieve the
higher clarity, in comparison to the 900 MHz antenna, but less of a skin depth. However,
this study confirmed that both showed the same features inside the lining, and both can
be considered as verified. Lately, due to the rapid development of technology, researchers
have been intrigued to use machine learning to process the radargram (GPR data). For
example, Dinh, Zayed [13] described the clustering-based threshold model based on the
GPR data to evaluate the condition of the concrete bridge decks, and continued his work
in 2018 to develop the automatic algorithm for the localization and detection of rebar in
the same target [14]. Dou, Wei [15] utilized the real-time hyperbola recognition and fitting
in GPR data by a column-connection clustering (C3) algorithm, and Liang, Xing [16] then
adapted the same algorithm for plant root detection based on the GPR data. Kilic and
Eren [17] applied the Neural Network (NN) algorithm for the GPR data to inspect the
voids and karst conduits in hydro-electric power station tunnels. Ozkaya, Melgani [18]
proposed a Convolutional Support Vector Machine (CSVM) network to analyze the GPR
data, which has a similar architecture to a Convolutional Neural Network (CNN). In the
same year, Jin and Duan [19] identified a pipeline based on the GPR data with the wavelet
scattering network-based machine learning, and a recent study comes from Cui, Quan [20],
where they studied the GPR-based automatic identification of root zones using HDBSCAN,
or the Hierarchical Density-based Spatial Clustering of Application with Noise.

Previous work has been limited to the fixed GPR system, where the initial condi-
tion of the tunnel should be known in advance. In fact, not every tunnel has detailed
information about its recent condition. We have undergone a rethinking of this problem
by developing a Vehicle-Mounted Ground Penetrating Radar (henceforth named VMGPR)
system by combining the GPR instrument with a versatile antenna holder device, inspired
by the truck crane, that can be adjusted in every tunnel condition [21]. Our method is a
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clear improvement and has many beneficial and effective applications on the field. We
applied VMGPR due to the rapid result of this method, considered the study area, which
is only able to be conducted during midnight in order to avoid the railway’s operating
time so that the normal commuting trains would not pass through and get in the way
of the scanning process. The main objectives of this paper are to detect the lining and to
identify the reinforcement bar (rebar) of the mountain tunnel. Here, we used an automatic
continuous picking phase based on the Fresnel reflection coefficient to detect the lining,
while implementing the clustering methods in machine learning to identify the rebar. Even
though various machine learning approaches have been proposed for GPR data, very few
studies reported the use of Hierarchical Agglomerative Clustering (HAC), especially for
tunnel inspection. This technique uses the bottom-up algorithm, where each data observa-
tion starts in its own cluster (leaves), and then successively merges pairs of clusters until
all clusters have been merged into one big cluster that contains all data [22]. Furthermore,
we simulated the Two-Dimensional Forward Modeling (TDFM) for each case to validate
and interpret our results. The attempt of our methods may show an alternative way to
inspect and evaluate the mountain tunnel with a comprehensive result.

2. Materials and Methods
2.1. The Site Description and the GPR Measurements

There are two types of tunnels in the SLRT route: six tunnels between the Central
Signal station to the Guzhuang station are Double-Rail Tunnels (DRT), whereas the rest of
them were built with Single-Rail Tunnels (SRT). In this study, we focused on the ten single-
rail tunnels along the Fangshan Township to the Shihzih Township i.e., Fangdian 1 (FD1),
Fangdian 2 (FD2), Fangshan 1 (FS1), Fangshan 2 (FS2), Fangshan 3 (FS3), Fangshan 4 (FS4),
Fangshan 5 (FS5), Fangye 1 (FY1), Fangye 2 (FY2), and Fangye 3 (FY3), where the length of
the tunnels are 40 m, 85 m, 300 m, 585 m, 688 m, 156 m, 205 m, 1809 m, 722 m, and 1360 m,
respectively (Figure 1).
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The tunnel consists of different layers, such as the second lining and the first lining, 
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The SLRT route also crossed the Neishih Fault nearby the Fangdian 2 tunnel, the Shihwen 
Anticline nearby the Fangshan 4 tunnel, and the Peihulushan Syncline nearby the Fangye 

Figure 1. The geographic map along the South-link Line Railway of Taiwan. The red pentagonal
shows the tunnel along this line, and the red-dashed line, blue line, and orange line are the Neishih
Fault, the Shihwen Anticline, and the Peihulushan Syncline, respectively.

The tunnel consists of different layers, such as the second lining and the first lining,
while the wall rock is the surrounding rocks that cover the tunnel, as shown in Figure 2.
The SLRT route also crossed the Neishih Fault nearby the Fangdian 2 tunnel, the Shih-
wen Anticline nearby the Fangshan 4 tunnel, and the Peihulushan Syncline nearby the
Fangye 2 tunnel. Furthermore, the Chaochou Fault is found on the southern side of the
SLRT, which separates the Pingtung Plain from the Central Range. Due to the presence



Remote Sens. 2021, 13, 4250 4 of 22

of a thick quaternary strata section in the basin to the west and the Miocene-age rocks in
the mountains on the east, it is demonstrated that the fault has a significant component
of vertical slip, up on the east side [23,24]. These various geological conditions make this
area a vulnerable zone for geological hazards. We used the GPR instrument from Sensor
and Software, Inc. with a 1000 MHz antenna frequency, which was placed on a versatile
antenna holder that is flexible to the tunnel’s condition. Later, we called it a VMGPR. The
VMGPR was set up on a small train with the antenna facing the surface of the lining, and it
traveled along the railroad tracks inside the tunnel in free-run mode and set to a reflection
survey type with a constant and low speed of around 20 km/h in order to maintain the
quality of the data. The scanned result showed real-time raw data on the Digital Video
Logger (DVL), which then stored them into the external memory card. Furthermore, we
processed and analyzed the GPR data with several steps, as shown in Figure 3.
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2.2. The Processing of GPR Data

The GPR raw data require filtering and editing steps in order to make the radargram
viewable and interpretable. In this study, we applied four steps, such as dewow data,
time-zero correction, background removal, and gain, by using Reflexw software [25]. Firstly,
we applied dewow data, which aim to eliminate the possible low-frequency noise (wow),
or DC-bias data, which arise either from the close juxtaposition of the antennas (receiver–
transmitter) or the inductive phenomena, which can generate a distortion of the mean of
A-scan towards values of amplitude that are far from zero; this noise should be removed
before applying other filters. We processed the data by a simple filter that acts within
the time domain, called subtract-mean (works on each trace). A running mean that is
subtracted from the central point is computed for each value of each trace, with the time
range value set to one principal period using an average subtraction algorithm, such
as [25–27]:

D(n) = Dr(n)−
1
N

N

∑
k=1

D(k) (1)

where D(n) is the amplitude of the nth processed trace, Dr(n) is the amplitude of the raw
trace, and D(k) is the average amplitudes of the traces. Secondly, the time delay of the
first arrival was corrected with the time-zero correction. This possibly occurred because of
several reasons, such as the temperature difference between the GPR instrument and the
surrounding environment during the data acquisition, and/or unstable distance between
the antenna and the ground [27–29]. Thirdly, a spatial filter for B-scan (filter for some trace
data) is applied, i.e., background removal. In this case, the radargram is often adulterated
by clutter that mostly appears as periodical ringing, where this phenomenon appears as
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closely horizontal events or flat-lying reflectors [25–27,30–32]. This procedure to remove
this feature is shown as followed:

D(n) = Dr(n)−
1
K

K

∑
k=1

Dk(n) (2)

where D(n) and Dr(n) are the processed and raw nth signal traces, and k is the number of the
trace within the selected set of A-scans. Fourthly, the gain is applied to compensate for the
signal attenuation or to strengthen the radargram’s signal. When the waves are propagating
to the ground, the signal suffers from an attenuation. The signal from the greater depth is
minimal compared to the upper part, and any target or structure in the lower part of the
radargram will either appear as imperceptible or just faintly along the lines, bringing out a
very unsatisfactory image of radargram. Here, we used the time-varying gain, which can
represent a useful mean for illuminating and interpreting deeper information in the inner
lining of the tunnel [25–27,32]. Generally, the time-varying gain function can be explained
as follows:

D(n) = Dr(n).k.n (3)

where D(n) is the nth sample of the trace in the time domain, and k is the gaining function
of the n sample. These steps will produce the filtered radargram, which is then used to
determine the layer and thickness of tunnel lining.
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2.3. The Tunnel Lining Detection Method

The tunnel lining can be identified using the Fresnel Reflection Coefficient (FRC).
This describes the reflection of the electromagnetic wave (EM wave) at the point when it
arrives at the interface between two media with different electromagnetic properties. It is
expressed in Equation (4) as

γ =
η2cosα1 − η1cosα2

η2cosα1 + η1cosα2
; (4)

where γ is the reflection coefficient, α1 is the incident angle, and α2 is the refraction angle.
η1 and η1 are the wave impedance for two media, expressed as

η1 =

√
µ1

ε1
, η2 =

√
µ2

ε2
(5)

where ε1 and ε2 are the relative permittivity of the medium 1 and medium 2. µ1 and µ1
are the relative magnetic permeability, where, in concrete, µ = 1. Due to the small distance
between the transmitter antenna and receiver antenna of the GPR system, the transmission
direction of electromagnetic field is vertical to the incident plane. If we consider all of these
factors, the FRC in the two media is expressed as

γ =

√
ε1 −

√
ε2√

ε1 +
√
ε2

(6)

Equation (6) is an important form for the lining identification. Different media will
have different ε, so that, when the wave propagates and hits the boundary between two
media, the reflection coefficient will increase or decrease and the amplitude of reflective
wave will also change. If ε1 > ε2, the FRC is positive, where the phase of the reflective wave
is the same as the incident, and vice versa, If ε1 < ε2, the FRC is negative, where the phase
of reflective wave is the reverse of the incident. Further, these assumptions are used to find
the lining of the tunnel [9,26,33–37].

2.3.1. The Lining Detection in A-Scan

A-scan is the basic measurement for the time domain. It is a single waveform recorded
by GPR. When the waves’ amplitude abruptly increases or decreases, it may be a sign that
the wave is hitting the interface between two media. There are two conditions for when
the wave is traveling through different media behind the surface of the tunnel:

• The Boundary Between the Air Layer to the Second Lining

The reflective wave barely attenuates when the electromagnetic waves are transmitted
in the air. If the amplitude is abruptly increased or decreased, the wave may arrive in the
other medium. Based on the FRC (Equation (6)), if the wave travels from the air with a
relative permittivity of 1 to the second lining, which consists of concrete with a relative
permittivity in the range of 4–10 [26,32,38], the FRC is negative, which means that the phase
of the reflective wave is the reverse of the incident. Hence, we picked it as the boundary
between the air layer and the second lining. Figure 4 shows the waveform of the GPR data
in the tunnel, where the boundary of these layers is marked as at around 2 ns.

• The Boundary Between the Second Lining to the First Lining

Generally, the relative permittivity of the first lining (ε3) is higher than the second
lining (ε2). This can occur due to the existence of moisture inside the first lining, which is
directly in contact with the wall rock that contains water in its pores. Due to the fact that
ε2 < ε3, the FRC is negative, i.e., the phase of the reflective wave is reverse to the incident.
Based on this information, we picked the boundary of these layers as at around 11 ns. We
did not pick the highest amplitude at around 4–6 ns because it is the response of the rebars
inside the second lining (Figure 4).
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2.3.2. The Lining Detection in B-Scan

B-scan is 2D data that are formed by gathering a set of A-scan data along the x-axis or
in a particular direction (e.g., Figure 5).
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Figure 5. (a) The filtered radargram with grayscale palette from the GPR scanning in the tunnel Fangdian I, with total
distance of 40 m (12k+763.7 to 12k+804.1); (b) the layer interpretation in the B-scan. The blue color is the air layer, the peach
color is the second lining, the green color is the first lining, and the brown color is the wall rock.

In 2D radargram, the time axis is usually pointed downwards and is related to the
depth of the radargram, whereas the horizontal axis is the distance or surface position.
The boundaries of each layer in B-scan are picked automatically and continuously based
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on A-scan data, and the amplitude value is represented in a grayscale color bar, where
the darker color is the negative amplitude and the lighter color is the positive amplitude.
Referring to the lining detection with A-scan, the phase and amplitude of reflective waves
are the pivotal benchmarks for detecting those boundaries. Hence, the strong amplitude
with darker color is picked as the interface of each layer.

Once the boundary of each layer is determined, the thickness (d) of the lining can be
estimated. Considering that the transmission direction of EM field is vertical to the incident
plane, we can use Equation (7) [33,39]:

d =
v
2

t (7)

where v is the EM wave velocity (m/ns), and t is the two-way travel time (ns).

2.4. The Semi-Automatic Rebar Identification

The rebar or reinforcement bar is a rod that provides reinforcement in concrete struc-
tures. It can be placed flat or stand straight in the concrete, and can also be in the form of
mesh. Generally, the rebar is easy to find in the filtered radargram, where the numerous
small hyperbolic patterns almost connected to each other are indicators of its presence.
However, this step is known to be the most labor-intensive and time consuming [14], espe-
cially if the scanning line is long, as, in this study, we scanned 10 tunnels with a total length
of 5950 m at a time. In this situation, it may take several working days or even weeks for the
analyst to complete the rebar-picking task only. For this reason, we applied the clustering
technique in machine learning to carry out the automatic rebar identification from the
filtered radargram i.e., Hierarchical Agglomerative Clustering (HAC) (see the workflow of
this study in Figure 3). The HAC presents several advantages compared to other clustering
methods. Firstly, in terms of flexibility, this method is easy to implement and applicable
to any attribute type of data, e.g., numerical or text. Secondly, it produces a dendrogram,
which is a graphical representation that records the sequences of merges or splits between
clusters, and so can produce an ordering of the objects, which is more informative than a
single partition because it provides more insight or a bigger picture about the relationship
between objects and clusters. Thirdly, there is no requirement to set the number of clusters
a priori, unlike most flat clustering methods, i.e., k-means. Fourthly, smaller clusters will be
generated, which may discover similarities in data. Despite number of advantages of the
HAC method, it also has some disadvantages. Firstly, sometimes it is difficult to identify
the optimal number of clusters by the dendrogram; however, this problem can be solved by
calculating the Silhouette Index (SI) (more details in Section 2.4.2). Secondly, it is irrevocable,
thus, when an agglomerative algorithm has joined two clusters, they cannot subsequently
be separated. In this case, the initial seeds should be chosen carefully. Thirdly, it involves
many arbitrary decisions, e.g., distance metric and linkage criteria, so performing multiple
experiments is recommended in order to obtain the actual results’ veracity, where the SI
can be used to evaluate the result. Notwithstanding the advantages and disadvantages,
this method can be used to solve multiple types of problems [22,40,41].

2.4.1. The Hilbert Transform (HT)

Before the clustering process, we implemented the Hilbert Transform (HT), which
is a time-domain transformation that shifts the phase of a signal by 90 degrees. This is
required to be carried out in order to obtain clustering result without being influenced by
the phase differences in the same layer. Commonly, the HT is used in post-stack seismic
analysis or GPR analysis to generate the analytical signal, from which, we can compute the
standard complex trace attribute, such as the pulse envelope or instantaneous amplitude,
instantaneous phase, and instantaneous frequency.

In this study, we used the HT to extract the envelope or instantaneous amplitude
that formed from a pair of traces that uniquely bracket the extremes of an oscillatory
signal. Specifically, the envelope is related to the reflectivity strength of the signal, which
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is commensurable to the square root of the signal complete energy at a moment in time
(Figure 6). Thus, a strong amplitude may be an indication of the significant changes in
structure or material in subsurface; in theory, the analytic signal through its module |h(t)|
determines the pulse A(t) envelope [25,42,43], expressed as

A(t) = |h(t)| =
√

x(t)2 + x̂(t)2 (8)
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2.4.2. The Application of the Hierarchical Agglomerative Clustering (HAC)

After the result from the HT is obtained, we transformed the data into the required
format for the clustering process. In this study, we applied the HAC to interpret our data
sets. This method is an unsupervised clustering technique that uses bottom-up approaches,
starting with every single data set as a single cluster and merging them into one big cluster.
It can be divided into six steps (Figure 3) [44–48].

First, data preparation. We prepared the data set, where the rows represented the
observations (individuals) and columns represented the features or the variables of the
data. Here, we used the amplitude as the feature.

Second, similarity measures. In order to decide which objects/clusters should be
combined or divided, we needed methods for measuring the similarity between objects.
Here, we used the Euclidean distance, which is the square root of the sum of the square
differences, expressed as

d(Pi,Pj) =

√
(P1x − P2x)

2 +
(

P1y − P2y
)2 (9)

where P is the point data, x and y are the row index, and d is the Euclidean distance. The
distance between two objects is 0 when they are perfectly correlated.

Third, linkage criteria. The linkage criteria determine the distance between sets of
observations as a function of the pairwise distances between observations, which means
that the linkage function takes the distance information. Here, we used Ward linkage,
which minimizes the total within-cluster variance:

d(u,v) = δ2(u, v) =
|u||v|
|u|+ |v| ‖u− v‖2 (10)

where u and v are the clusters data.
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Fourth, dendrogram. This is a tree-like diagram that records the sequences of merges
of the data. The branches describe the distance between each cluster, where, the longer the
branches, the higher the dissimilarity.

Fifth, evaluation. This consists of a set of techniques for finding a set of clusters that
best fit natural partitions (of given datasets) without any a priori class information. The
outcome of the clustering process is validated by a cluster validity index. Here, we used
Silhouette index to evaluate the clusters result; mathematically, we write it down as:

S(i) =
bi − ai

max{aibi}
, i ∈ [1, M] (11)

where S(i) is the Silhouette index, a is the distance between the data inside a cluster to
the center of its cluster, and b is the distance between one cluster to another cluster. It
determines how well each data set lies within its cluster, and how well each cluster is
separated from each other. A high silhouette index indicates a good result, which means
that the data are well clustered.

Sixth, visualization. This is the final step of the HAC, where we present the data as a
meaningful figure or table. In this case, the HAC translated the filtered radargram into the
clustered radargram.

2.5. The Two-Dimensional Forward Modeling (TDFM)

We applied Two-Dimensional Forward Modeling (TDFM) to validate and interpret
the results. The model for the tunnel lining and the rebar were generated by the 2D Finite
Difference Method (FDM) [25,49–51]. We estimated the relative permittivity (ε) of the
model based on Equation (12) below:

εr,n = εr,n−1

1−
(

A0
Amax

)2
−∑n−2

i=1 γi

(
Ai

Amax

)
−
(

An−1
Amax

)
1−

(
A0

Amax

)2
−∑n−2

i=1 γi

(
Ai

Amax

)
+
(

An−1
Amax

)


2

(12)

where εr is the relative permittivity, n is the layer, Ao is the amplitude of the air, and Amax is
the maximum amplitude of the reflected signal. To use this equation, we needed to assume
that the layer is homogeneous; thus, there is no lateral and vertical variation within the
same layer, unless there is another feature inside it. The geometry of the tunnel lining and
rebars are shown in Figures 7 and 8, respectively. Figure 7 shows four layers, such as the
air layer (εr = 1, d = 0.1 m), the second lining (εr = 6, d = 0.5 m), the first lining (εr = 10.5,
d = 0.2 m), and the wall rock (εr = 13, d = 0.3 m), these layers are in the box, where the
distance of the x direction is 1 m and the depth is 1.1 m based on the prior information
in the field data. Figure 8 shows the model for the rebars with x = 5.2 m and depth or
y = 0.44 m. It consists of two layers: the air layer, with relative permittivity (εr) = 1, relative
magnetic permeability (µr) = 1, and electrical conductivity (σ) = 0 S/m, and the second
lining, with εr = 6, µr = 1, and σ = 1 × 10−3 S/m. The rebars model are placed inside the
second lining, with radius (r) = 0.02 m, εr = 1.45, µr = 1000, and σ = 100 S/m.
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3. Results
3.1. The Lining of The Tunnel

Although we scanned 10 tunnels, we obtained 26 radargrams, due to the tunnel’s
condition (Table 1). Sometimes, in the same tunnel, we needed to stop due to the fact that
the GPR antennas were too close to the surface of the tunnel, so we adjusted the versatile
holder to avoid the antennas bumping into the surface of the tunnel (this is one of the
advantages of our VMGPR system) and started over again. The radargram revealed that
the lining of the tunnel consists of three layers: the second lining, the first lining, and the
wall rock (Figure 4). However, another additional layer was found before the second lining,
and we interpreted it as the air layer. It appeared due to the distance of the antennas and
the surface of the wall; if the antennas are close to the surface wall, the air layer is thin, and
vice versa.

Table 1. The thickness of the tunnel lining in the SLRT.

Tunnel Name Start Point (Mileage) End Point (Mileage) Total Distance (m)
Average Thickness (m)

2nd Lining 1st Lining

Fangdian 1 (FD1) 12k+764 12k+804 40 0.49 0.25
Fangdian 2 (FD 2) 12k+980 13k+065 85 0.49 0.26
Fangshan 1 (FS1) 13k+945 14k+245 300 0.50 0.23
Fangshan 2 (FS2) 14k+917 15k+502 585 0.48 0.22
Fangshan 3 (FS3) 15k+795 16k+483 688 0.49 0.19
Fangshan 4 (FS4) 17k+170 17k+326 156 0.42 0.19
Fangshan 5 (FS5) 17k+729 17k+934 205 0.46 0.23
Fangye 1 (FY1) 18k+218 20k+027 1809 0.46 0.22
Fangye 2 (FY2) 20k+777 21k+499 722 0.44 0.19
Fangye 3 (FY3) 22k+004 23k+364 1360 0.41 0.20

3.2. The Rebar Inside the Second Lining

The rebar in the tunnels was mainly found in the second lining, and was approximately
0.1 m below the surface. Figure 9 shows an example from the Fangdian 1 tunnel. Numerous
small hyperbolic patterns were visible in the radargram embedded in the concrete screed,
identified as the responses of the rebar (Figure 9a). Figure 9b,c shows the post-processing
results, where the FK-migration and the HT were applied in order to enhance the results.
We used similar steps with the tunnel lining detection in order to find the interface of the
second lining and the rebar.

3.3. The Result of TDFM

The results of the TDFM for the tunnel lining and the rebar are shown in Figures 10 and 11,
respectively. Figure 10 shows the ideal condition model, which means that no noise influences
the data, where the blue line is the negative phase and the magenta line is the positive phase.
It is intended to determine the actual condition of the phase of a wave when it propagates
into layers with different ε, and the result revealed that the phases of all of the interfaces are
negative (ε1 < ε2 < ε3 < ε4). Figure 11a shows the result from the rebar model before being
processed, where it is shown that the location of the rebar is hard to interpret due to the fact that
the multiple and hyperbolic responses are connected to each other. We included FK migration
to correct the right position of the reflectors (Figure 11b), so that the responses of the rebar
become clear and easy to interpret. Here, we picked the positive phase as the interface between
the second lining and the rebar due to the higher relative permittivity of the second lining
compare to the rebar (ε1 > ε2). Furthermore, we applied the HT (Figure 11c) to enhance the
responses of the signal, where the negative frequency components are shifted by−90 degrees.
In addition, we simulated the TDFM with additional random noise from 0%, to 30% to analyze
the influence of the noise on the GPR data, as shown in Figure 12. The geometry of the model
is shown in Figure 12a, where we adopted the condition of the field data. The blue color is
the rebar and the magenta color is the second lining. After all, we processed the model until
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we obtained the filtered radargram with the HT, while we added the random noise during
the processing step. Figure 12b,d show the filtered radargram with random noise, whereas
Figure 12c,e show the filtered radargram after the HT with random noise.

3.4. The Result of the HAC

We processed both the field data and the TDFM for the rebar automatic identification.
As an example, we used Figure 9c from the Fangdian 1 tunnel. Using Equations (8) and (9),
we were able to translate the 2D radargram into a 2D clustered radargram. We produced
nine of them with a different number of clusters (k = 2–10). Figure 13 shows the clustered
radargram for the field data, where the blue color is the rebar inside the second lining.
Furthermore, we processed the TDFM radargram based on the model from Figure 12
to understand the influence of the different random noise, and produced 36 clustered
radargrams. Figures 14 and 15 show the clustered radargram for the TDFM data with 0%
and 30% random noise, respectively. Similar to the field data, the blue color also represents
the rebar inside the second lining.
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Figure 9. (a) Radargram in the Fangdian 1 tunnel. Numerous small hyperbolic patterns were visible
in the radargram embedded in the concrete screed, identified as rebar responses; (b) radargram with
rebar responses after FK migration. The green dots are the interface of the rebar and the second lining;
(c) radargram after Hilbert Transform (HT) to calculate the instantaneous amplitude or envelope.
Strong amplitude (the magenta color) as a response of the rebar reflection.
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4. Discussion

Conducting an extensive study of the tunnel lining detection and rebar identification
undertaken by the GPR method in the actively operating railway route required a great deal
of precise work. Several aspects need to be considered in order to obtain a comprehensive
result, such as the system and processing steps. This study found that the VMGPR worked
very effectively during the scanning process. Due to its versatility, the occurrence of
damage to both the GPR instrument and the surface of the tunnel can be minimized.

The boundary of each lining can be found on the radargram in the form of a series of
strong reflection stripes. These distinguishable stripes are caused by multiple individual
reflections, which originate in the interface between each layer due to different electromag-
netic properties. The more the relative permittivity of two media varies, the bigger the
color contrast. For example, the difference in relative permittivity between the air and the
second lining is greater than the rest of the interface (Figure 5a). Hence, the color contrast
between these two is brighter than the others. A similar conclusion was reached by the
TDFM result in Figure 10. Three boundaries can be found, where the first one with the
brightest contrast is the boundary between the air (εr = 1) and the second lining (εr = 6),
the second one is the boundary between the second lining and the first lining (εr = 10.5),
and the third one with the least contrast is the boundary between the first lining and the
wall rock (εr = 13.5). Besides, this behavior can occur due to the attenuation of the EM
wave. As the wave propagates in the medium, it suffers from attenuation and distortion
as a result of spherical spreading, absorption, and dispersion. Daniels [33] provided a
list of attenuations of various materials measured by the GPR. The attenuation in the
air is 0 dB/m, the attenuation in the concrete dry is in the range of 2–12 dB/m, and the
attenuation in the concrete wet is in the range of 10–25 dB/m. Using this information, we
concluded that attenuation increases with depth, and thus, the amplitude becomes small
and the contrast decreases.

After the boundary is determined, the thickness of each lining (d) is estimated. Table 1
lists our estimation of d for each tunnel. The average thickness of the second lining and
the first lining is in the range of 0.41–0.50 m and 0.19–0.26 m, respectively. Overall these
findings are in accordance with the findings reported by Lee and Wang [2] and Wang,
Chang [1], where the concrete lining in the SLRT tunnels was approximately 0.30–0.55 m
thick and had a compressive strength of around 210 MPa. Essentially, the thickness of
the second lining should be the same along the tunnel. However, we observed on the
radargram that some parts of the lining were thinning. In order to assess this problem, we
classified the tunnel according to the total distance of the thinning lining over the total
length of the tunnel using Equation (12),

TL(x) =
LTL(x)
TLT(x)

× 100% (13)

where TL(x) is the percentage of the thinning lining in the tunnel (%), LTL(x) is the total
length of the thinning lining ≥ 0.05 m (m), and TLT (x) is the total length of the tunnel (m);
the result is listed in Table 2. It is revealed that all of the tunnel is in category A, with the
total thinning layer in the range of 0–1.71%, except for the Fangye 1 tunnel with 19.39%
(category B). Hence, this tunnel will be further inspected by the engineer.

After the filtered radargram was carried out, we then applied the Hilbert Transform
(HT) to enhance our data by extracting the pulse envelope. Figures 9c and 12c are the
examples for the HT implementation for the field data and the TDFM data, respectively.
The envelope not only gives us an overview of the energy distribution of the traces, but
also makes it easier for us to determine the signal’s first arrival, without getting involved
with the different phases of the amplitude, since the HT shifts the phase of a signal by
90 degrees. This means that the positive frequency components are shifted by +90 degrees,
and vice versa. Besides, this transformation helps us to uniform the data without any phase
difference as the data input for the clustering process.
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Table 2. The classification of the tunnel based on the percentage of the thinning lining.

Tunnel Name Percentage (%) Category

Fangdian 1 (FD1) 0 A
Fangdian 2 (FD 2) 0 A
Fangshan 1 (FS1) 0.13 A
Fangshan 2 (FS2) 0.76 A
Fangshan 3 (FS3) 1.05 A
Fangshan 4 (FS4) 0.10 A
Fangshan 5 (FS5) 0 A
Fangye 1 (FY1) 19.39 B
Fangye 2 (FY2) 1.71 A
Fangye 3 (FY3) 0.07 A

We successfully identified the rebars using Hierarchical Agglomerative Clustering
(HAC). Figure 13 shows the field data with nine clusters (k = 2–10), where the rebars are
identified as at around 4 ns or at a 0.2 m depth on the clustered radargram, and are marked
with a blue color. Even though the number of clusters increases, the rebars are still distinct,
on account of the high amplitude compared to the surrounding lining. However, it is
interesting to see that the shape of the rebars is irregular in every clustered radargram.
In our view, this could have occurred due to the high rate of noise on the data. To assess
and confirm this finding, the radargram was simulated. Figure 14 presents a clustered
radargram from the TDFM with 0% random noise. We found that this result is in line with
the field data, where the rebars can be identified in the middle of the clustered radargram
and are marked with a blue color. This test highlighted that the rebars are plainly visible in
every number of clusters (k = 2–10) in conformity with the field data (Figure 13), yet the
simulation failed to describe the irregular shape of the rebars. In order to see the effect
of the noise on the rebars, we gradually added random noise to the model from 0% to
30%. Figure 15 shows a clustered radargram from the TDFM with 30% random noise.
Significantly, this result can describe the irregular shape of the rebars in the field data,
which means that the noise has affected the shape of the rebars on the radargram; this
result concurs with our initial findings. Since clustering algorithms define clusters that are
not known a priori information, the final partition of data requires some kind of evaluation
method in most applications, including this study. Using Equation (11), we were able
to evaluate the results and determine the optimal number of clusters (k) simultaneously,
because it can measure the quality of the clustering result (Section 2.4.2). Figure 16 presents
the Silhouette Index (SI) curve for the field data, where the highest average SI with 0.704 is
k = 2. A similar pattern of results was obtained in TDFM, as shown in Figure 17, where the
average SI for each model with various random noise shows that the optimal number of
clusters is k = 2, where the dark blue color is the response of the rebar and the rest is the
response of the surrounding lining, as shown in Figures 13–15.

The models with random noise 0%, 5% 10%, 15% 20%, 25%, and 30% have the average
SI value for k = 2, i.e., 0. 98, 0.898, 0.798, 0.789, 0.775, 0.776, and 0.752, respectively. Our
finding appears to be well substantiated with the TDFM results, which makes sense, since
the model is built based on the field data, where the rebar is placed inside the second
lining. The most striking result from the TDFM is that the model with noise can mimic
our field data. The more noise we added into it, the rougher the shape of the rebar that
was obtained. Apart from this slight discordance with other models, the TDFM with 30%
random noise seems to describe our field data well, which means that it contained ≥30%
noise. We tried several methods to remove it; however, excessive editing may result in a
loss of the actual features of the target. Despite this condition, we still can distinguish the
rebar and the lining well. There are two limitations in this study that could be addressed
in future research. First, several radargrams contain strong multiples in response to the
tunnel walls being covered by the waterproof membrane, which make them difficult to
analyze. We tried several ways to suppress the multiples, but they could not be completely
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eliminated. Second, it is difficult to simulate the noise of the field data on the model from
TDFM. In this study, we simply added random noise into the model, so conducting further
study is needed. Despite the limitations of this study, our findings are capable of detecting
the lining of the tunnel and identifying the rebar.
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5. Conclusions

We have presented the implementation of the Vehicle-mounted Ground Penetrating
Radar (VMGPR) method in the 10 tunnels along the South-link Line Railway of Taiwan
(SLRT) in order to both detect the tunnel lining boundary with a comprehensive method
and identify the rebar with the Hierarchical Agglomerative Clustering (HAC) in machine
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learning. The tunnel lining boundary was detected based on the Fresnel Reflection Coeffi-
cient (FRC) and was verified with Two-dimensional Forward Modeling (TDFM). Taken
together, these results suggest three boundaries of the tunnel lining: the air–second lining
boundary, the second–first lining boundary, and the first–wall rock boundary. Then, we
determined the lining thickness of each tunnel, where the average thickness for the second
lining and the first lining is in the range of 0.41–0.50 m and 0.19–0.26 m, respectively. We
then estimated the thickness of the thinning layer in the tunnels, where we found that the
Fangye 1 tunnel is the only tunnel in category B, with 19.39% of its second lining being
thinned, while the other tunnels are still in category A (0–1.71%). By applying the Hilbert
Transform (HT), the interface of each target is easy to detect because it shifted the phase of
the signal by 90 degrees, and the overview of the energy distribution of the data is obtained.
Moreover, the HT radargram is useful as the input data for the clustering process, where
the phase of the amplitude can be neglected.

We have described the procedure for the HAC method to identify the rebar. Both
the field data and the TDFM model with different random noise (0–30%) are processed.
We evaluated the clustering result and found the optimal number of clusters (k) with the
Silhouette Index (SI). The findings suggest that the TDFM model is consistent with the field
data, where k = 2 is the best choice to represent our data set. Moreover, according to the
HAC result, the TDFM model can mimic the field data. We have found that the TDFM
model with 30% random noise seems to describe our data in a good manner, where the
rebar response is rough due to the noise.

6. Patents

“Antenna Holder Device for Ground Penetrating Radar”-Taiwan Patent No. M612652–
Date of Patent: 1 June 2021.
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